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Background and Motivation

* Machine learning (ML) currently applied successfully in
protein engineering (low-cost estimates to replace
time- and resource-intensive experiments)

ML model performance highly dependent on domain
shift between training and testing data

* Domain shift common in protein engineering because
of biased data collection

* Uncertainty quantification (UQ) benchmarked in other
fields (e.g., chemistry and materials science) to
understand effect of domain shift on model reliability

* No such benchmark has been done on protein
datasets

We benchmark a panel of UQ methods on standardized
datasets to assess the effect of distributional shift and
provide recommendations for use in active learning.

Datasets and Splits

8 splits across 3 protein landscapes from FLIP? cover varied
levels of distributional shift between train and test
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Train models with 7 UQ methods on each of 8 dataset splits
and compare performance
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1. Dallago, et al. NeurlPS Datasets and Benchmarks Track (2021).

Evaluation Metrics

{ RMSE { MA

miscalibration area:
area under the calibration

root mean square error of
predicted values to true

values error curve
t C { 40/R
coverage: width of 95% confidence
% of true values that fall interval relative to training
within +20 of prediction set range
¢ P t Punc

rank correlation of
uncertainties to residuals

rank correlation of predicted
values to true values
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Some models highly calibrated on the highest-domain-shift splits, while others poorly
calibrated even on random splits

CNN ensemble is often one of the highest accuracy models, but also one of the
most poorly calibrated
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Few methods perform well in both coverage and width
GP among the best across all landscapes and splits

I CNN Dropout
04 A

CNN Ensemble
I CNN Evidential
) BN CNN MVE
0-2 B CNNSVI
I B GP Continuous
00 A j I Linear Bayesian Ridge

Test punc

a > > % i M
\ A \ e \ \? \Y >
Q) ST O SN NP
e s Ke S Q) Q) Q) €

Dataset / Split

« Dropout has one of the highest and most consistent rank correlations across splits
« Many methods have rank correlations near zero for the most challenging splits

No single method performs consistently well across all
metrics, landscapes, and splits




